Integrable nonlinear field equations and loop algebra structures

نویسندگان

  • E. Alfinito
  • M. Palese
چکیده

We apply the (direct and inverse) prolongation method to a couple of non-linear Schrödinger equations. These are taken as a laboratory field model for analyzing the existence of a connection between the integrability property and loop algebras. Exploiting a realization of the Kac-Moody type of the incomplete prolongation algebra associated with the system under consideration, we develop a procedure with allows us to generate a new class of integrable non-linear field equations containing the original ones as a special case.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expanding Integrable Models and Their Some Reductions as Well as Darboux Transformations

In this paper we first present a 3-dimensional Lie algebra H and enlarge it into a 6-dimensional Lie algebra T with corresponding loop algebras H̃ and T̃ , respectively. By using the loop algebra H̃ and the Tu scheme, we obtain an integrable hierarchy from which we derive a new Darboux transformation to produce a set of exact periodic solutions. With the loop algebra T̃ , a new integrable-coupling ...

متن کامل

Loop Algebras and Bi-integrable Couplings∗

A class of non-semisimple matrix loop algebras consisting of triangular block matrices is introduced and used to generate bi-integrable couplings of soliton equations from zero curvature equations. The variational identities under non-degenerate, symmetric and ad-invariant bilinear forms are used to furnish Hamiltonian structures of the resulting bi-integrable couplings. A special case of the s...

متن کامل

Solutions structure of integrable families of Riccati equations and their applications to the perturbed nonlinear fractional Schrodinger equation

Some preliminaries about the integrable families of Riccati equations and solutions structure of these equations in several cases are presented in this paper, then by using of definitions for fractional derivative we apply the new extended of tanh method to the perturbed nonlinear fractional Schrodinger equation with the kerr law nonlinearity. Finally by using of this method and solutions of Ri...

متن کامل

Constructing nonlinear discrete integrable Hamiltonian couplings

Beginning with Lax pairs from special non-semisimple matrix Lie algebras, we establish a scheme for constructing nonlinear discrete integrable couplings. Discrete variational identities over the associated loop algebras are used to build Hamiltonian structures for the resulting integrable couplings. We illustrate the application of the scheme by means of an enlargedVolterra spectral problemandp...

متن کامل

Integrable couplings and matrix loop algebras

Wewill discuss how to generate integrable couplings from zero curvature equations associated with matrix spectral problems. The key elements are matrix loop algebras consisting of block matrices with blocks of the same size or different sizes. Hamiltonian structures are furnished by applying the variational identity defined over semi-direct sums of Lie algebras. Illustrative examples include in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995